Possible superfluidity of molecular hydrogen in a two-dimensional crystal phase of sodium

نویسندگان

  • Claudio Cazorla
  • Jordi Boronat
چکیده

We theoretically investigate the ground-state properties of a molecular para-hydrogen (p-H2) film in which crystallization is energetically frustrated by embedding sodium (Na) atoms periodically distributed in a triangular lattice. In order to fully deal with the quantum nature of p-H2 molecules, we employ the diffusion Monte Carlo method and realistic semiempirical pairwise potentials describing the interactions between H2-H2 and Na-H2 species. In particular, we calculate the energetic, structural, and superfluid properties of two-dimensional Na-H2 systems within a narrow density interval around equilibrium at zero temperature. In contrast to previous computational studies considering other alkali metal species such as rubidium and potassium, we find that the p-H2 ground state is a liquid with a significantly large superfluid fraction of ρs/ρ = 0.29(2). The appearance of p-H2 superfluid response is due to the fact that the interactions between Na atoms and H2 molecules are less attractive than between H2 molecules. This induces a considerable reduction of the hydrogen density which favors the stabilization of the liquid phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study

The N-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of N-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric paramet...

متن کامل

Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress

Heavy metals pollution is one of the key environmental problems. In this research, the effect of seed priming with salicylic acid and sodium hydrosulfide was investigated on methionine and arginine amino acids contents and some compounds derived from their metabolism as well as ZmACS6 and ZmSAMD transcripts levels in maize plants under lead stress. For this purpose, maize seeds were soaked in s...

متن کامل

Two-dimensional H2 clusters: A path-integral Monte Carlo study

The possibility of maintaining H2 in a fluid state at temperatures low enough to produce a superfluid has recently attracted considerable attention. Unfortunately, the H2-H2 interaction is too strong to allow molecular hydrogen to be a liquid below its bulk triple point of 14 K. One way to attain a liquid ground state is to reduce the effective attraction between the H2 molecule or alternativel...

متن کامل

Effect of Alkyl Substituents on the Hydrogen Bonding and Molecular Structure of Benzophenylhydroxamic Acids Crystal structure of UO2 Complex of p-Isopropylbenzophenylhydroxamic Acid

The effect of alkyl substituents on the C-phenyl and/or the N-Phenyl ring of benzophenylhydroxamic acid on their molecular structure and hydrogen bonding has been investigated. The predominant configuration in CHCl3 is determined by steric and electronic effects. Substituents on the C-phenyl ring favor the cis configuration, while substituents in the N-phenyl ring favor a trans c...

متن کامل

Redetermination of Crystal Structure of N,N'-bis (2-Hydroxybenzylidene)-2,2-Dimethyl-1,3-Propanediamine

The structure of N,N'-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine, C19H22N2O2, has been studied at low temperature (120K) by means of single-crystal X-ray diffraction. Solving the structure shows an orthorhombic unit cell, with P212121 space group, Z = 4, a = 6.1046 (4) Å, b = 15.8349 (11)</e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013